پرش به محتوا

درگاه:ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد
(تغییرمسیر از درگاه:ریاضی)

صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی
نماد ریاضی

ریاضیات (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و تبدیل تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم. دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند، بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

ترکیبیات شاخه‌ای از ریاضیات است که به بررسی دسته‌هایی معمولاً متناهی) از اشیا می‌پردازد که در شرایط معینی صدق می‌کنند. ریشه آن در روش‌های مربوط به شمردن دسته‌بندی‌های مختلف از اشیا یا افراد بوده‌است. امروز مبحث شمارش همهٔ ترکیبیات را در بر نمی‌گیرد بلکه ترکیبیات یکی از شاخه‌های بسیار وسیع عالم ریاضی است و شمارش بخشی از آن است.

شمارش و شمردن حالات انجام یک کار از زمان‌های دور مورد بررسی بوده‌است. گویا این کار بیش از همه در جنگها برای شمارش سربازان به کار می‌رفته‌است.

زندگی‌نامهٔ برگزیده

گالیلئو گالیله (۱۵ فوریهٔ ۱۵۶۴ - ۸ ژانویهٔ ۱۶۴۲) دانشمند و مخترع سرشناس ایتالیائی در سده‌های ۱۶ و ۱۷ میلادی بود. گالیله در فیزیک، نجوم، ریاضیات و فلسفه علم تبحر داشت و یکی از پایه‌گذاران تحول علمی و گذار به دوران دانش نوین بود. بخشی از شهرت وی به دلیل تأیید نظریه کوپرنیک مبنی بر مرکزیت نداشتن زمین در جهان است که منجر به محاکمه وی در دادگاه تفتیش عقاید شد. گالیله با تلسکوپی که خود ساخته بود به رصد آسمان‌ها پرداخت و توانست جزئیات سطح ماه را مشاهده کند.
بیشتر...

مفاهیم

تعبیر هندسی نسبت طلایی
تعبیر هندسی نسبت طلایی

نسبت طلایی در ریاضیات و هنر هنگامی است که «نسبت بخش بزرگتر به بخش کوچکتر، برابر با نسبت کل به بخش بزرگتر» باشد. تعریف دیگر نسبت طلایی این است که «عددی مثبت است که اگر به آن یک واحد اضافه کنیم به مربع آن خواهیم رسید».تعریف هندسی آن چنین است: طول مستطیلی به مساحت واحد که عرض آن یک واحد کمتر از طولش باشد.

نوشتارهای برگزیده

نگارهٔ برگزیده

فراکتال مندلبرو یک فراکتال سه‌بعدی از مجموعه مندلبرو می‌باشد که بوسیله دانیل وایت و پاول نایلاندر ساخته شده‌است. این فراکتال با استفاده از دستگاه مختصات کروی حاصل می‌گردد.

گفتاورد

«مطالعه ریاضی برایم دو مرحله دارد. مرحلۀ اول مطالعۀ پژوهش‌های قبلی است. خواندن ریاضیات زیبا، مثل قدم زدن در یک شهر تاریخی زیبا است، که طی آن شما بناهای زیبایی می‌بینید. مرحله دوم مثل این است که ناگهان بال درآوردم و می‌توانم بر فراز شهر پرواز کنم و چیزهایی را ببینم که از روی زمین معلوم نبود»..

کوچر بیرکار

هندسه

مثلث.
مثلث.

مثلث شکل مسطحی است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است. مساحت مثلث را از رابطه زیر به دست می‌آورند:

  • مساحت مثلث = (قاعده × ارتــــــفاع) ÷ ۲

آیا می‌دانستید؟

آیا می‌دانستید...
آیا می‌دانستید...

... که اعداد کاتالان برخی از مسائل ترکیبیاتی مثل طرق تکمیل پرانتز گذاری یک عبارت جبری با عامل را حل می کند؟


درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا