صحت و دقت
ظاهر
در یک مجموعه اندازهگیری، صِحَت (به انگلیسی: accuracy) به معنی نزدیکی مقادیر اندازهگیری به یک مقدار خاص و دِقَت (به انگلیسی: precision) به معنی نزدیکی مقادیر اندازهگیری به یکدیگر است. صحت یک ابزار، معمولاً کالیبره شدنی میباشد اما دقت آن، بخشی از ماهیت ابزار میباشد.[۱]
دقت معیاری توصیفی از خطاهای تصادفی است که نشاندهندهٔ دامنهٔ پراکندگی آماری است.
صحت نیز به دو شکل تعریف میشود:[۲]
- تعریفی که بیشتر معمول است، دقت را معیاری توصیفی از خطاهای ذاتی (سیستماتیک) اندازهگیری در نظر میگیرد که خود نشاندهندهٔ تمایل ذاتی دادهها است.[۳]
- تعریف دیگر (تعریف ISO)، دقت را به توصیف هر دو نوع خطای مشاهده و همچنین تعریف بالا میگویند.[۴]
واقعیت | ||||||
جامعه آماری | در واقعیت مثبت | در واقعیت منفی | شیوع = Σ Condition positive/Σ Total population | صحت (ACC) = Σ True positive + Σ True negative/Σ Total population | ||
پیشبینی | پیشبینی مثبت |
مثبت صادق | مثبت کاذب خطای نوع اول |
Positive predictive value (PPV), دقت و بازیابی = Σ True positive/Σ Predicted condition positive | میزان کشف اشتباه (FDR) = Σ False positive/Σ Predicted condition positive | |
پیشبینی منفی |
منفی کاذب خطای نوع دوم |
منفی صادق | False omission rate (FOR) = Σ False negative/Σ Predicted condition negative | Negative predictive value (NPV) = Σ True negative/Σ Predicted condition negative | ||
حساسیت و ویژگی (TPR), دقت و بازیابی، حساسیت و ویژگی، probability of detection, توان آماری = Σ True positive/Σ Condition positive | False positive rate (FPR), بازیابی اطلاعات، probability of false alarm = Σ False positive/Σ Condition negative | Positive likelihood ratio (LR+) = TPR/FPR | Diagnostic odds ratio (DOR) = LR+/LR− | امتیاز اف ۱ = 2 · Precision · Recall/Precision + Recall | ||
False negative rate (FNR), Miss rate = Σ False negative/Σ Condition positive | حساسیت و ویژگی (SPC), Selectivity, حساسیت و ویژگی (TNR) = Σ True negative/Σ Condition negative | Negative likelihood ratio (LR−) = FNR/TNR |
واژگان و مشتقات
ماتریس درهمریختگی
- در واقعیت درست یا (P)
- تعداد موارد واقعاً مثبت در داده
- در واقعیت منفی یا (N)
- تعداد موارد واقعاً منفی در داده
- مثبت صادق یا (TP)
- مانند آژیر درست
- منفی صادق یا (TN)
- مانند سکوت درت
- مثبت کاذب یا (FP)
- معادل با آژیر کاذب، خطای نوع اول (هواپیمای دشمن نبوده ولی آژیر زده شده)
- منفی کاذب یا (FN)
- معادل با سکوت اشتباه خطای نوع دوم (هواپیمای دشمن بوده ولی آژیر زده نشده)
- recall، sensitivity، hit rate، یا true positive rate یا (TPR)
- specificity، selectivity یا true negative rate یا (TNR)
- precision یا positive predictive value یا (PPV)
- negative predictive value یا (NPV)
- رتبه ناموجود یا false negative rate یا (FNR)
- fall-out یا false positive rate یا (FPR)
- میزان کشف اشتباه (FDR)
- false omission rate (FOR)
- Threat score (TS) یا Critical Success Index (CSI)
- صحت و دقت (ACC)
- امتیاز اف ۱
- is the میانگین همساز بازیابی اطلاعات and حساسیت و ویژگی
- Matthews correlation coefficient (MCC)
- Informedness یا Bookmaker Informedness (BM)
- Markedness (MK)
منبع: Fawcett (2006),[۵] Powers (2011),[۶] Ting (2011),[۷] and CAWCR[۸]
منابع
[ویرایش]- ↑ JCGM 200:2008 International vocabulary of metrology — Basic and general concepts and associated terms (VIM)
- ↑ JCGM 200:2008 International vocabulary of metrology — Basic and general concepts and associated terms (VIM)
- ↑ Taylor, John Robert (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. pp. 128–129. ISBN 0-935702-75-X.
- ↑ North Atlantic Treaty Organization, NATO Standardization Agency AAP-6 – Glossary of terms and definitions, p 43.
- ↑ Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010.
- ↑ Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation" (PDF). Journal of Machine Learning Technologies. 2 (1): 37–63.
- ↑ Ting, Kai Ming (2011). Encyclopedia of machine learning. Springer. ISBN 978-0-387-30164-8.
- ↑ Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-26). "WWRP/WGNE Joint Working Group on Forecast Verification Research". Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2019-07-17.