سیستم استنتاج عصبی-فازی سازگار
ظاهر
یک سیستم استنتاج عصبی-فازی سازگار (به انگلیسی: adaptive neuro-fuzzy inference system یا adaptive network-based fuzzy inference system که به صورت ANFIS خلاصه شده است) نوعی شبکه عصبی مصنوعی است که براساس سیستم فازی تاکاگی-سوگنو (Takagi–Sugeno) می باشد. این شیوه در اوایل ۱۹۹۰ ایجاد شده است.[۱][۲] از آنجایی که این سیستم، شبکه های عصبی و مفاهیم منطق فازی را یکی می کند، میتواند از امکانات هر دو آنها در یک قاب بهره برد.سیستم استنتاج (inference) آن مطابق با مجموعه قوانین فازی اگر-آنگاه است که قابلیت یادگیری برای تقریب زدن توابع غیرخطی را دارد.[۳] از این رو، ANFIS به عنوان یک برآورد جهانی (universal estimator) مطرح شده است.[۴]
منابع
[ویرایش]- ↑ Jang, Jyh-Shing R (1991). Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm (PDF). Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14–19. Vol. 2. pp. 762–767.
- ↑ Jang, J.-S.R. (1993). "ANFIS: adaptive-network-based fuzzy inference system". IEEE Transactions on Systems, Man and Cybernetics. 23 (3). doi:10.1109/21.256541.
- ↑ Abraham, A. (2005), "Adaptation of Fuzzy Inference System Using Neural Learning", in Nedjah, Nadia; de Macedo Mourelle, Luiza (eds.), Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing, vol. 181, Germany: Springer Verlag, pp. 53–83, doi:10.1007/11339366_3
- ↑ Jang, Sun, Mizutani (1997) – Neuro-Fuzzy and Soft Computing – Prentice Hall, pp 335–368, ISBN 0-13-261066-3