پرش به محتوا

درگاه:ریاضیات/مفاهیم/۳

از ویکی‌پدیا، دانشنامهٔ آزاد
بر اساس قضیه فیثاغورس مجموع مساحت‌های دو مربع روی دو ضلع قائم(a و b)، برابر مربع روی وتر(c) است.
بر اساس قضیه فیثاغورس مجموع مساحت‌های دو مربع روی دو ضلع قائم(a و b)، برابر مربع روی وتر(c) است.

قضیهٔ فیثاغورس در هندسه و فضای اقلیدسی بخشی از صورت کلی قانون کسینوس‌ها هنگامی که زاویهٔ بین دو بردار ۹۰ درجه‌است می‌باشد. این قضیه به نام ریاضی‌دان یونانی فیثاغورس نامگذاری شده‌است. به سخن دیگر در یک مثلث راست‌گوشه (قائم الزاویه) همواره مجموع توان‌های دوم دو ضلع برابر با توان دوم ضلع سوم است. قانون کسیونس‌ها بیان می‌کند که اگر دو بردار (یا خط) a و b در راس O تشکیل یک زاویه با نام A بدهند.
بردار مجموع از رابطهٔ بدست می‌آید.