تئوری سیستمهای خاکستری
تئوری سیستمهای خاکستری یا تحلیلهای رابطه خاکستری برای اولین بار توسط جولانگ دنگ (Deng Julong) در سال ۱۹۸۲ مطرح شد.[۱] تئوری سیستمهای خاکستری عدم قطعیت را به صورت بازه نمایش میدهد که عرض بازه میتواند منعکس کننده میزان عدم قطعیت باشد. در دنیای واقعی سیستمها در اغلب اوقات بصورت کامل شناخته شده نیستند. بخشی از سیستم شناخته شدهاست (سفید) و بخشی از سیستم ناشناخته است (سیاه). ترکیب اطلاعات شناخته شده و شناخته نشده را میتوان با رنگ خاکستری نمایش داد.[۲] به عبارتی دیگر، سیستم خاکستری به معنای سیستمی است که در آن بخشی از اطلاعات شناخته شده و بخشی از اطلاعات ناشناخته است. این رویکرد همانند منطق فازی کاربرد گستردهای در دنیای واقعی داد که در سالهای اخیر در زمینههای مختلف مورد استفاده قرار گرفتهاست.
تحلیل رابطه خاکستری داینامیک
[ویرایش]فرض کنید یک سری داده ایدهآل است و یک سری داده جایگزین با طول بردار برابر است. نمره رابطه خاکستری برای این دو بردار از طریق فرمول زیر محاسبه میگردد:[۳]
در حالی که ضریب رابطه خاکستری از طریق فرمول زیر محاسبه میگردد:[۳]
در فرمولهای بالا بیانگر وزن هر یک از اعضا سری داده ورودی است و بیشتر در مواقع حل مسائل تصمیمگیری چندمعیاره کاربرد دارد. همچنین بیانگر ضریب تمایز خاکستری داینامیک است که مقدار بهینه آن برای هر مسئله میبایست با استفاده از مدل برنامه ریزی خطی محاسبه گردد.[۳] لازم به ذکر است تحلیل رابطه خاکستری داینامیک فرم کلی تحلیل رابطه خاکستری است.[۳] در تحلیل رابطه خاکستری مقدار ضریب تمایز همواره 0.5 در نظر گرفته میشد در حالیکه در تحلیل رابطه خاکستری داینامیک این مقدار براساس ماهیت دادههای ورودی محاسبه می گردد.[۳] مقدار بهینه ضریب تمایز داینامیک در تحلیل رابطه خاکستری داینامیک از طریق مدل برنامه ریزی خطی زیر قابل محاسبه است:
تحلیل رابطه خاکستری داینامیک در نرم افزار متلب جهت استفاده در تصمیمگیری چندمعیاره پیادهسازی شده است و بصورت رایگان در سایت Mathworks قابل دسترسی است (به منبع [۴] رجوع شود). [۴]
برنامهریزی خطی خاکستری
[ویرایش]مسائل برنامهریزی خطی که دارای پارامترهای خاکستری هستند به صورت زیر تعریف میگردند:[۵]
به این نوع مسئله برنامهریزی خطی با پارامترهای خاکستری میگویند که در آن شاخص هزینه خاکستری، ماتریس شاخص مصرف خاکستری، شاخص محدودیت برای مصرف منابع به صورت خاکستری و متغیر تصمیمگیری مسئله است. تا کنون روشهای حل مختلفی برای مدلهای برنامهریزی خطی خاکستری ارائه شدهاست که با تبدیل مدل خاکستری به یک مدل چند هدفه قطعی مقدار بهینه خاکستری را برای متغیرهای تصمیم ارائه میکند.[۵]
تصمیمگیری چند معیاره خاکستری
[ویرایش]تا کنون روشهای تصمیمگیری چند معیاره خاکستری مختلفی ارائه شدهاست که دادههای ورودی در آنها بصورت اعداد خاکستری تعریف میشوند. به عنوان مثال میتوان به روش تصمیمگیری چندمعیاره OPA خاکستری،[۶] روش تصمیمگیری تحلیل رابطه خاکستری داینامیک،[۳] روش تصمیمگیری بهترین-بدترین خاکستری،[۷] روش تصمیمگیری خاکستری QUALIFLEX[۸] و روش تصمیمگیری تاپسیس خاکستری[۹] اشاره کرد.
منابع
[ویرایش]- ↑ Ju-Long, Deng (1982). "Control problems of grey systems". Systems & Control Letters. 1 (5): 288–294. doi:10.1016/S0167-6911(82)80025-X.
- ↑ Mahmoudi, Amin; Bagherpour, Morteza; Javed, Saad Ahmed (2021). "Grey Earned Value Management: Theory and Applications". IEEE Transactions on Engineering Management. 68 (6): 1703–1721. doi:10.1109/TEM.2019.2920904. ISSN 1558-0040.
- ↑ ۳٫۰ ۳٫۱ ۳٫۲ ۳٫۳ ۳٫۴ ۳٫۵ Javed, Saad Ahmed; Gunasekaran, Angappa; Mahmoudi, Amin (2022). "DGRA: Multi-sourcing and Supplier Classification through Dynamic Grey Relational Analysis Method". Computers & Industrial Engineering: 108674. doi:10.1016/j.cie.2022.108674.
- ↑ ۴٫۰ ۴٫۱ Mahmoudi, Amin. «Dynamic Grey Relational Analysis (DGRA), MATLAB Central File Exchange. Retrieved September 26, 2022».
- ↑ ۵٫۰ ۵٫۱ Mahmoudi, Amin; Liu, Sifeng; Javed, Saad Ahmed; Abbasi, Mehdi (2019-02-16). "A novel method for solving linear programming with grey parameters". Journal of Intelligent & Fuzzy Systems. 36 (1): 161–172. doi:10.3233/jifs-181071. ISSN 1064-1246.
- ↑ Mahmoudi, Amin; Deng, Xiaopeng; Javed, Saad Ahmed; Zhang, Na (2021). "Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach". Business Strategy and the Environment (به انگلیسی). 30 (1): 318–339. doi:10.1002/bse.2623. ISSN 0964-4733.
- ↑ Mahmoudi, Amin; Mi, Xiaomei; Liao, Huchang; Feylizadeh, Mohammad Reza; Turskis, Zenonas (2020). "Grey Best-Worst Method for Multiple Experts Multiple Criteria Decision Making Under Uncertainty". Informatica: 331–357. doi:10.15388/20-infor409. ISSN 0868-4952.
- ↑ Mahmoudi, Amin; Javed, Saad Ahmed; Zhang, Zhen; Deng, Xiaopeng (2019). "Grey Group QUALIFLEX Method: Application in Project Management". 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE. doi:10.1109/iske47853.2019.9170357.
- ↑ Zare, Amir; Feylizadeh, Mohammad Reza; Mahmoudi, Amin; Liu, Sifeng (2018). "Suitable computerized maintenance management system selection using grey group TOPSIS and fuzzy group VIKOR: A case study". Decision Science Letters: 341–358. doi:10.5267/j.dsl.2018.3.002. ISSN 1929-5804.